On local antimagic chromatic number of cycle-related join graphs

نویسندگان

چکیده

An edge labeling of a connected graph $G = (V, E)$ is said to be local antimagic if it bijection $f:E \to\{1,\ldots ,|E|\}$ such that for any pair adjacent vertices $x$ and $y$, $f^+(x)\not= f^+(y)$, where the induced vertex label $f^+(x)= \sum f(e)$, with $e$ ranging over all edges incident $x$. The chromatic number $G$, denoted by $\chi_{la}(G)$, minimum distinct labels labelings $G$. In this paper, several sufficient conditions $\chi_{la}(H)\le \chi_{la}(G)$ are obtained, $H$ obtained from $G$ certain deleted or added. We then determined exact value many cycle related join graphs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

the locating chromatic number of the join of graphs

‎let $f$ be a proper $k$-coloring of a connected graph $g$ and‎ ‎$pi=(v_1,v_2,ldots,v_k)$ be an ordered partition of $v(g)$ into‎ ‎the resulting color classes‎. ‎for a vertex $v$ of $g$‎, ‎the color‎ ‎code of $v$ with respect to $pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_pi}(v)=(d(v,v_1),d(v,v_2),ldots,d(v,v_k))$‎, ‎where $d(v,v_i)=min{d(v,x):~xin v_i}‎, ‎1leq ileq k$‎. ‎if‎ ‎distinct...

متن کامل

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

Cycle lengths and chromatic number of graphs

For a simple 5nite graph G let Co(G) and Ce(G) denote the set of odd cycle lengths and even cycle lengths in a graph G, respectively. We will show that the chromatic number (G) of G satis5es: (G)6min{2r + 2; 2s+ 3}6 r + s+ 2, if |Co(G)|= r and |Ce(G)|= s. c © 2004 Elsevier B.V. All rights reserved. MSC: 05C15

متن کامل

The Locating Chromatic Number of the Join of Graphs

Let f be a proper k-coloring of a connected graph G and Π = (V1, V2, . . . , Vk) be an ordered partition of V (G) into the resulting color classes. For a vertex v of G, the color code of v with respect to Π is defined to be the ordered k-tuple cΠ(v) = (d(v, V1), d(v, V2), . . . , d(v, Vk)), where d(v, Vi) = min{d(v, x) : x ∈ Vi}, 1 ≤ i ≤ k. If distinct vertices have distinct color codes, then f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discussiones Mathematicae Graph Theory

سال: 2021

ISSN: ['1234-3099', '2083-5892']

DOI: https://doi.org/10.7151/dmgt.2177